
Citation: Huanyu Liu, Jianfeng Cai,

Tingjia Zhang, Hongsheng Li, Siyuan

Wang, Guangming Zhu, Syed Afaq Ali

Shah, Mohammed Bennamoun, and

Liang Zhang, Flowmind2Digital: The

First End-to-End Flowmind

Recognition and Conversion

Approach. Electronics 2024, 1, 0.

https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2024 by the authors.

Submitted to Electronics for possible

open access publication under

the terms and conditions of

the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Flowmind2Digital: The First End-to-End Flowmind Recognition
and Conversion Approach
Huanyu Liu 1,†, Jianfeng Cai 1,†, Tingjia Zhang1,†, Hongsheng Li2, Siyuan Wang2, Guangming Zhu2, Syed Afaq Ali
Shah3, Mohammed Bennamoun4 and Liang Zhang2,*

1 School of Artificial Intelligence, Xidian University; {hyliu_5, jfcai_1, tjzhang_1129}@stu.xidian.edu.cn
2 School of Computer Science and Technology, Xidian University; {hsli, siyuanwang}@stu.xidian.edu.cn,

gmzhu@xidian.edu.cn
3 School of Science and core member of Centre for AI and Machine Learning, ECU; afaq.shah@ecu.edu.au
4 School of Physics, Maths and Computing, Computer Science and Software Engineering, UWA;

mohammed.bennamoun@uwa.edu.au
* Correspondence: liangzhang@xidian.edu.cn
† These authors contributed equally to this work.

Flowcharts and mind maps, collectively referred to as flowmind, play an important 1

role in our daily, and many companies have developed dedicated tools. Hand-drawn 2

flowminds offer significant advantages for real-time and collaborative communication. 3

However, there is an increasing demand to convert them into a digital format for further 4

processing. Automated conversion methods are crucial in addressing the challenges associ- 5

ated with manual conversion, such as the cost of time and learning. Previous works have 6

proposed diverse sketch recognition methods. However, these methods face significant 7

limitations in practical situations. Firstly, most methods are designed for specific fields, 8

making it challenging to extend their usage to other fields. Additionally, none of these 9

methods address the critical step of digital conversion after recognition, which is essen- 10

tial to users. Moreover, existing datasets exhibit significant biases relative to actual data, 11

hindering the methods’ generalization ability. 12

13

Our paper proposes the Flowmind2digital method and hdFlowmind dataset to address 14

the aforementioned challenges. Flowmind2digital is the first comprehensive recognition and 15

conversion method for flowminds, utilizing a neural network architecture and keypoint 16

detection technology to enhance overall recognition accuracy. Our hdFlowmind dataset 17

consists of 1,776 hand-drawn and manually annotated flowminds, covering 22 scenarios 18

and surpassing existing datasets in size. Our experiments showcase the effectiveness of our 19

method, with an accuracy rate of 87.3% on the hdFlowmind dataset, surpassing the previous 20

state-of-the-art work by 11.9%. Additionally, our dataset demonstrates effectiveness, with 21

a 2.9% increase in accuracy after pre-training and fine-tuning on Handwritten-diagram- 22

dataset. We also highlight the importance of simple graphics for sketch recognition, which 23

can improve accuracy by 9.3%. 24

1. Introduction 25

Sketching is a prevalent and innate communication skill in human society, dating 26

back to ancient times and evident in the spontaneous drawings of infants. There are two 27

practical forms of sketches: (a) flowcharts, which visually represent the sequence of steps in 28

a process and serve as an indispensable tool for documenting and revealing one’s thought 29

process, and (b) mind maps, which are visual thinking tools that enable us to structure our 30

ideas and create an intuitive framework around a central concept. Due to their usefulness, 31

many companies have developed software for creating these sketches, collectively referred 32

to as flowmind. However, flowminds are typically not created in any specific digital 33

format but rather hand-drawn by users. These hand-drawn flowminds can be created 34

during brainstorming and planning at a meeting, note-taking for academic research, or 35

Version January 6, 2024 submitted to Electronics https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/electronics

Version January 6, 2024 submitted to Electronics 2 of 28

process planning as shown in Fig. 1. Hand-drawn flowminds have the advantage of 36

real-time notation, as they only require a pen and any available background to immediately 37

record structural information. However, interacting with software is not as direct, causing 38

inconvenience in many scenarios. 39

Figure 1. Flowminds used in Various Scenarios

However, there is a need to eventually convert these hand-drawn flowminds into 40

digital format for the sake of clarity, better documentation, and record keeping. The 41

process of converting hand-drawn flowminds into digital format involves a large amount 42

of manual work on the software, including dragging each shape to the right position and 43

typing textual labels for connectors (such as lines, arrows, and double arrows). This task 44

requires considerable time and effort, especially for normal users who are not proficient in 45

using such software. 46

To alleviate the burden of manual conversion, there is a need for an automated method 47

that allows regular users to obtain digital flowminds directly on commonly used software 48

from their hand-drawn input. This can be achieved in two steps: first, recognizing the 49

elements in a hand-drawn flowmind; and second, converting the recognized elements into 50

common formats using certain digital tools. 51

Existing methods have limitations and assumptions when it comes to recognizing 52

elements in a hand-drawn flowmind, and they often produce output in a format that is not 53

commonly used. For example, the UML model proposed by [1] only allows users to draw 54

in predefined formats, which does not align with the initial sketch’s intention. HDBPMN, 55

proposed by [2][3], offers a comprehensive approach that generates an XML file of a BPMN 56

model from sketch input. However, this format is not commonly used in daily scenarios. 57

Furthermore, no existing method has met the requirement for the final conversion to a 58

commonly used format. 59

Existing datasets have limitations in terms of real-life scenarios, as they mainly consist 60

of samples drawn on electronic devices. For instance, the Handwritten-diagram-dataset 61

by [3] lacks diversity in terms of input sources. In contrast, real-life scenarios include 62

photos of whiteboards or glass boards, which can present challenges such as overexposure 63

or reflections, and are common sources of initial input. Therefore, there is a need for a 64

comprehensive recognition and conversion method that can interface with commonly used 65

software, such as Microsoft Power Point (PPT) and Visio, and a dataset that covers a larger 66

scope of real-world scenarios. 67

Hence, our work makes two significant contributions. Firstly, we present Flow- 68

mind2digital, an approach that utilizes a neural network architecture based on the Arrow- 69

RCNN model proposed by [4] to automatically convert hand-drawn flowminds into ed- 70

itable PPT and Visio digital diagrams. We aim to improve the practicality of the existing 71

approaches for normal users. Secondly, we introduce hdFlowmind dataset, which consists 72

of 1,776 images and 27,804 annotations. This dataset covers a larger scope of scenarios 73

and is considerably larger than previous datasets. Additionally, we include 485 samples 74

of basic shapes in the dataset to demonstrate their importance in the experiments. We 75

make this dataset publicly available for future research. Our experiments on this dataset 76

indicate that Flowmind2digital outperforms the state-of-the-art models, which validates 77

the effectiveness of hdFlowmind. Lastly, we also provide the first ultra-lightweight version 78

of the Visio-Python kit that facilitates direct programming operations on Visio software. 79

Version January 6, 2024 submitted to Electronics 3 of 28

Our work in this paper significantly extends the scope and quality of the Arrow-RCNN 80

approach, which focuses on flowchart recognition and keypoint detection. Specifically, our 81

contributions are as follows: 82

• We introduce an improvement based on the human keypoints detection that improves 83

the accuracy of Arrow-RCNN. 84

• We extend the model to cover the recognition of specific content of text box, which 85

overcomes the limitation of Arrow-RCNN model that only recognizes the location of 86

text. 87

• We further achieve compatibility with the internal models of Detectron21, providing a 88

pre-trained model that demonstrates the usefulness of our hdFlowmind pre-training 89

approach for training in other tasks within the relevant sketch domain. 90

The rest of this paper is organized as follows: We provide an overview of existing 91

methods and related work in the field of sketch recognition in Section 2, followed by several 92

challenges that exist in the recognition scenario we focus on in Section 3. Section 4 provides 93

a detailed description of our hdFlowmind dataset. Then we introduce our Flowmind2digital 94

recognition model in Section 5 and evaluate our approach and dataset in Section 6. Finally, 95

we discuss the implications and limitations of our approach in Section 7. The paper is 96

concluded in Section 8. 97

2. Related Works 98

Drawing sketches is a useful method to convey information quickly and effectively. 99

As a result, several sketch recognition approaches and datasets have been proposed to 100

automate the conversion of sketches to digital formats. Microsoft’s Visio and PowerPoint 101

software have become widely used for creating digital diagrams. In this context, our work 102

concentrates on flowmind recognition using keypoint detection and post-processing the 103

results for use in PPT and Visio software. Therefore, we discuss the following related works 104

in this paper: (1) existing flowmind recognition methods and datasets; (2) generic keypoint 105

detection methods; (3) approach to interface with PPT and Visio software. 106

2.1. Flowmind Recognition 107

The process of flowmind recognition can be divided into three tasks including 1) shape 108

recognition to locate and classify various basic shapes 2) connector recognition to identify 109

the connector between each shape and the specific connection revealed using keypoints 3) 110

text recognition to locate the text label and identify the specific content. 111

Conventionally, sketch recognition can be differentiated into online and offline meth- 112

ods which have diverse patterns. The input to online method is mainly a series of sequence 113

strokes on geometry, stroke or gesture base. There are also datasets, including FC_A pro- 114

posed by Awal[5] , FA and FC_B proposed by Bresler et al.[6], DIDI [7] proposed by Gervais 115

et al. etc. [8][9] 116

In comparison to the online approaches, offline sketch recognition simply needs raw 117

images instead of sequential strokes, making it more suitable for real world situations. 118

However, this also brings greater complexity, given that less information is contained in 119

the input. Some works [10][11][12] tried to convert it to online problem by reconstructing 120

the strokes of the hand-drawn flowcharts, but it is not applicable in the scenario we handle 121

in this work which contains noises and raw images. 122

Therefore, the object-based method is also proposed, requiring corresponding datasets 123

to train the models. Since the datasets of online and offline methods overlap, the online 124

dataset can be converted into the offline datasets through certain transformation. Wu et 125

al. [13] proposed to use FC_A dataset to train offline recognition model [5][14]. Bresler 126

extracted two datasets from the FC_B dataset – D_a and D_b [6][15][16] for offline recogni- 127

tion. 128

1 https://github.com/facebookresearch/detectron2.git

Version January 6, 2024 submitted to Electronics 4 of 28

At the same time, several datasets have been created to support sketch recognition for 129

various scenes, including Bernhard’s HDPBPMN dataset for BPMN graphs [3]. However, 130

these datasets have limitations in terms of comprehensiveness, particularly in terms of 131

exposure, drawing tools, and materials. These limitations will be discussed further in 132

Section 3. Table 1 provides an overview of the attributes of these datasets for different 133

sketch scenes. 134

Table 1. Related Work and Datasets

Name Category Authors
Objects Connection Non-digital Digital

DB DPC DPTShapes Connectors Textboxes Keypoints Exposure Blur Pen-Pressure DE

FC_A[5] Flowcharts Awal et al. Yes Yes Yes Yes - - No No No No No

FA[15] Finite automata Bresler,Pr_u_a Yes Yes Yes Yes - - No No No No No

FC_B[6] Flowcharts Bresler,Pr_u_a Yes Yes Yes Yes - - No No No No No

FC_Bscan[16] Flowcharts Bresler,Pr_u_a Yes Yes Yes Yes - - No Yes No No No

DIDItext[7] Flowcharts Philippe Gervais Yes Yes Yes Yes - - Yes Yes No Yes Yes

DIDIno_text[7] Flowcharts Philippe Gervais Yes Yes No Yes - - Yes Yes No Yes Yes

hdBPMN2021[3] BPMN models Bernhard Schafer Yes Yes No Yes Yes Yes No No Yes Yes Yes

hdBPMN2022 BPMN models Bernhard Schafer Yes Yes Yes Yes Yes Yes No No Yes Yes Yes

hdFlowmind Flowcharts, Mind map Ours Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

*DB = different backgrounds, DE = different equipment DPC = different pen colors, DPT = different pen thickness

In terms of detection model, Julca-Aguilar and Hirata used the Faster-RCNN model 135

[17] in target detection to identify flowchart elements [18]. However, traditional object de- 136

tection model can only tell where the arrows in a flowchart is, but not their correspondence 137

(to where and what) . To address such limitation, Bernard et al. proposed Arrow-RCNN 138

[4], a model developed from Faster-RCNN, capable of detecting the head and tail of arrows 139

in flowcharts, but lacked post-processing step to digitalize the result. Bernard et al. also 140

proposed SketchToProcess [19], which realized the direct transformation of hand-drawn 141

BPMN diagrams into corresponding standard BPMN xml files. However, the problem of 142

connection orientation is still not solved. The scope of use is relatively narrow because 143

of the limitations in recognizing the multiple connectors that commonly appear in mind 144

mapping. 145

It is worth noting that most existing approaches do not provide a way to connect 146

post-processing with previous software to generate editable graphics, which is a crucial 147

requirement in practical applications. Most methods simply recognize and output raw 148

data without further processing. The Sketch2Process model is an exception as it generates 149

BPMN XML files, but even then, additional processing by users is still required. In practice, 150

normal users require software-editable graphics rather than raw data that needs further 151

steps. Therefore, the limitation of existing transformation models is evident from a practical 152

perspective. 153

In summary, the analysis presented above highlights the active research field of sketch 154

recognition for raw-sketch transformation, which has seen various approaches and datasets 155

being introduced. However, there are still considerable gaps in the existing datasets in 156

terms of their scope and quantity. Moreover, the current approaches do not consider the 157

crucial step of connecting the recognized sketches to relevant software for practical use. 158

2.2. Keypoint Detection 159

Recognizing the connections in flowmind is a challenging task as it requires accurately 160

identifying the trajectory of each connection. However, a more flexible approach is to 161

simplify the target by recognizing a limited number of keypoints, which can improve the 162

accuracy and flexibility of subsequent adjustments and generation in software. 163

Keypoint detection has numerous applications, one of which is human posture estima- 164

tion (HPE) that includes the detection of facial, hand, and human keypoints. HPE systems 165

such as those presented in [20][21] typically follow a top-down approach for multi-keypoint 166

detection. In the first stage, object detectors determine the location of each instance in 167

Version January 6, 2024 submitted to Electronics 5 of 28

Figure 2. Visio Interface

an image. In the second stage, instances are clipped from the original image, adjusted 168

to a specific resolution, and fed to an HPE network that outputs the keypoints’ location. 169

Currently, there are two main methods. 170

The first approach for keypoint detection involves using the keypoint location as the 171

target for regression and directly outputting the location of the keypoint through a fully 172

connected layer, without generating prediction results for each pixel. While this method 173

has a lower model complexity and can achieve some end-to-end full differential training, 174

it also has some obvious problems. These problems mainly include lower accuracy and 175

generalization due to direct regression, no theoretical error lower bound, and a higher risk 176

of overfitting because the task of keypoints is relatively flexible compared to HPE. Therefore, 177

we do not use this method. The second approach is to estimate the heatmap based on 178

keypoint location, which generates a heat value for each pixel position that indicates the 179

probability of the corresponding pixel being a keypoint. Heatmap-based methods have 180

been evaluated and have been shown to have higher accuracy in recent years, but there are 181

still slight differences in the task of connector keypoints. 182

The traditional COCO dataset includes person instances that may be occluded, under- 183

exposed, or blurred, resulting in varying levels of visibility for the keypoints. The visibility 184

is usually divided into three levels in general: "0" indicates that there is no keypoint. "1" 185

indicates a invisible keypoint due to occlusion, and "2" indicates an existing visible keypoint. 186

However, unlike keypoint detection for human posture estimation, where keypoints may 187

have different levels of visibility due to occlusion, underexposure, or blur, keypoints of 188

connectors typically have a clear and binary visibility state of either "0" or "2" since the 189

head and tail of almost all arrows are clearly visible. Thus, the original keypoint detection 190

method used for human posture estimation cannot be directly applied to connector key- 191

point detection. In this paper, we propose a modified model tailored to our specific needs, 192

as discussed in Section 5. 193

2.3. Related Software 194

PowerPoint, a presentation developed by Microsoft Corporation, is widely used in 195

flowchart creation and mind map editing. It has become a fundamental software tool in 196

many industries. Visio is a graphics software tool in the Microsoft Office toolkit, which 197

helps in understanding complex systems and processes and making better decisions. Visio 198

diagrams can be saved in formats such as .svg and .dwg. As PowerPoint and Visio are 199

widely used, our proposed solution aims to interface with these software tools. Fig. 2 200

shows an example of the Visio interface. 201

Currently, the commonly used method for interacting with these software is to use the 202

PPT and Visio API provided by Microsoft’s official website2 3. This API offers detailed shape 203

2 https://learn.microsoft.com/office/vba/api/overview/visio
3 https://learn.microsoft.com/office/vba/api/overview/powerpoint

Version January 6, 2024 submitted to Electronics 6 of 28

Figure 3. Example of a flowmind with various highlighted recognition challenges

interfaces, internal functions, and proprietary properties, but it is primarily intended for 204

developing their own extensions, making it difficult to interface with our model. Therefore, 205

we have opted to use third-party extension packages to establish the interconnection. 206

The Python extension package "PPTX"4 is used for interacting with PowerPoint soft- 207

ware, and it adheres to the rules of PPT documents. The package defines pages as containers, 208

shapes as objects, and connection lines as entities. Using this package, objects in PowerPoint 209

can be manipulated through the Python language. 210

Regarding the Visio software, although there are third-party extension packages such 211

as vsdx, their functions are too limited to meet basic needs. Therefore, we developed our 212

API using the third-party extension package win32com provided by Python. This API 213

mainly allows us to call the underlying components of Word, Excel, PPT, Visio, and other 214

software. 215

3. Challenges 216

This section discusses the difficulties in recognizing hand-drawn flowminds, which 217

result from various real-world factors that are not adequately represented in existing 218

datasets. We will focus on the challenges of shape recognition, connector recognition, text 219

recognition, and the impact of the raw backgrounds. To illustrate these challenges, we will 220

use the example drawing shown in Fig. ??, which is taken from our hdFlowmind dataset. 221

Shape Recognition Challenge 222

Recognizing all shapes and their positions in a flowmind is a major challenge in 223

flowmind recognition, as it is the first step in the process. Shapes in a flowmind are referred 224

to as nodes, and can include rectangles, diamonds, arrows, and text, each representing a 225

different node. Shapes are defined by a bounding box, which contains information about 226

the shape’s location and type. However, recognizing shapes can be quite complex due to 227

several challenges, including: 228

1. One challenge in shape recognition is the ambiguity between similar shape types. For 229

example, ellipses and long ellipses have a high degree of similarity, with the curvature 230

of the edge being the only distinguishing factor (curvature is non-zero for ellipses, 231

and zero for long ellipses). However, in practice, people tend to draw them similarly, 232

which can lead to confusion in recognition. 233

2. The second challenge in shape recognition of hand-drawn flowminds is that the 234

objects often exceed the bounding box of the shape, as shown in problem s1 in Fig. ??. 235

4 https://python-pptx.readthedocs.io

Version January 6, 2024 submitted to Electronics 7 of 28

This makes it difficult to distinguish between different shape types. Moreover, the 236

boundary of the shape may be drawn multiple times, resulting in messy strokes, as 237

depicted in problem s2 in Fig. ??. 238

Connector Recognition Challenge 239

The connectors in flowcharts and mind maps play a crucial role in indicating the 240

relationships between different nodes. Although many datasets classify connectors as a 241

single type, they can actually be differentiated into three graphic styles, namely line, single 242

arrow, and double arrow, which need to be recognized separately. 243

Recognizing connectors is more complex than recognizing shapes since connecting 244

lines not only need to be identified in terms of their type and location, but also require the 245

determination of the shapes they connect and the relationship between them. Some of the 246

challenges associated with connector recognition are: 247

1. The flexibility of the connection line path in hand-drawn flowminds can cause connec- 248

tors to go through the entire graph, resulting in the bounding box including a large 249

portion of other objects (e1 in Fig. ??). 250

2. Many-to-Many connections occur when a node extends multiple connection lines to 251

different objects (e2), resulting in a high intersection over union (IOU) between the 252

bounding boxes of these objects. 253

3. The crossing and intersection of connection lines, as shown in e3, can complicate the 254

identification process since lines often cross over or intersect with other objects. 255

4. In rough sketches, bad connections are common where the drawn connectors are 256

not always connected correctly to the corresponding object (e4). This issue makes it 257

difficult to identify, especially when multiple possible objects are involved. 258

Text Recognition Challenge 259

Recognition of text involves identifying both the textboxes and their respective posi- 260

tions, as well as the specific content within them. This task presents a few challenges such 261

as: 262

1. Handwriting recognition (HWR) is required to recognize the specific text content 263

in the text box after locating it. However, in hand-drawn flowminds, the text often 264

has more background interference compared to general HWR. For instance, people 265

may draw their sketch on any background according to their convenience, and some 266

backgrounds may even include noises such as printed fonts (t1). 267

2. Text that goes beyond the boundaries of a text box and intersects with other shapes or 268

connectors is referred to as "Text out of text box". This can occur when the content 269

of the text is too long and goes beyond the bounding box. Detecting this type of 270

text presents similar challenges to those encountered when detecting shapes and 271

connectors. 272

Figure 4. Various Backgrounds in Flowminds

Version January 6, 2024 submitted to Electronics 8 of 28

Other Challenges 273

Apart from the challenges mentioned earlier, there may be additional external factors 274

that could impact the recognition process. The challenges in this case include: 275

1. The background of a hand-drawn flowmind can vary depending on the type of paper 276

used, which may include horizontal lines, grids, squares, dashed lines, or blank 277

spaces. The additional lines in the background may resemble the flowmind shapes 278

or connectors drawn by the user, which can cause confusion during identification. 279

Other scenarios may involve drawing on whiteboards, blackboards, or glass boards. 280

Additionally, some users may use electronic devices for sketching, such as tablets or 281

scanning software, which can result in variations in the background. Examples are 282

shown in Fig. 4. 283

2. The quality of the raw sketch can be influenced by the variability in drawing tools, 284

such as the clarity, consistency, and thickness of the lines drawn. 285

3. The equipment used to generate the input image can vary. Screenshots or scans taken 286

directly on electronic devices typically have high clarity. However, taking a photo 287

of a raw sketch on paper can result in rotated, blurry images or incomplete content. 288

Examples illustrating this are shown in Fig. 5. 289

4. Another challenge lies in the post-processing stage after recognition. Existing methods 290

do not consider the interface with software, leaving a gap in this aspect. We believe 291

that we are the first to propose an interface with specific software for generating 292

editable graphics 293

Figure 5. Recognition Challenges Resulting from Different Methods of Digitizing Flowminds

4. Dataset 294

This section discusses the Collection, Annotation, Characteristics and Splitting of the 295

hdFlowmind dataset, that is publicly available 5. Furthermore, emphasis is placed on the 296

advantages of our dataset over relevant datasets in terms of quantity, quality, and diversity, 297

showed in Table 1. This emphasis aims to comprehensively address and overcome the 298

various challenges mentioned in the Section 3. 299

4.1. Dataset Collection 300

Our dataset comprises 1,776 hand-drawn flowminds collected from XIDIAN Uni- 301

versity. These images include hand-drawn flowcharts found on the Internet, mind maps 302

used in practical applications, as well as sketches made during meetings or brainstorming 303

sessions. The participants were instructed to ensure that their designs and strokes reflect 304

real-life scenarios. 305

5 https://huggingface.co/datasets/caijanfeng/hdflowmind

Version January 6, 2024 submitted to Electronics 9 of 28

Figure 6. Overview of the hdFlowmind Dataset

To cover a larger scope of scenarios, we asked participants to draw with different 306

drawing mediums, backgrounds, and photographic equipment. This intentional diver- 307

sification in the dataset creation process ensures a more comprehensive representation 308

of real-world conditions and user behaviors. Our dataset encompasses a rich variety of 309

hand-drawn sketches captured under diverse conditions, including varying lighting, tex- 310

tures, and drawing styles. Unlike some existing datasets that may have limited diversity in 311

terms of drawing styles or environmental conditions mentioned in Section 2, our dataset 312

embraces a broader spectrum of user interactions and artistic expressions. This diversity in 313

the data collection process enhances the generalization capability of our model, making it 314

well-suited for real-world applications where visual inputs can vary significantly. 315

In the category of non-digital samples, We have a variety of non-digital samples in our 316

dataset, which were drawn on different backgrounds such as whiteboards, glass boards, 317

standard A4 paper, brown and yellow paper, thin paper (which is translucent and the 318

content on the reverse side can be seen), grid paper, quadrille paper, lined paper (with 319

line color in green or black), ruled paper, and chart paper (which has some patterns and 320

text on it). The drawing tools used in these samples include markers, black pens, blue 321

pens, whiteboard pens, chalks, and more. Additionally, the circumstantial conditions under 322

which these samples were drawn include normal lighting, dusky lighting, overexposure, 323

and shadow occlusion. We also have some samples that were scanned using software6. 324

For digital samples, participants used electronic devices such as Apple iPad and 325

Samsung Pad, along with electronic pens, to create the sketches. They used two different 326

software programs, Concept drawing board and Notability7 8. The backgrounds for these 327

sketches included grids, lattices, horizontal lines, and scattered dots in various colors. The 328

pen settings varied, including brush strokes with pressure sensing, fix jitter pen, and soft 329

pencil tools provided in the software. 330

The overview of hdFlowmind is provided in Fig 6. 331

4.2. Dataset Annotation 332

We utilized the PASCAL VOC format, which is a widely used format for Object 333

Detection datasets in the field of Computer Vision, to annotate the shapes and connections 334

in each sample for both training and evaluation purposes. To generate the annotation files, 335

we utilized a data annotation tool provided by Huawei Cloud9. These annotation files 336

6 https://www.camscanner.com/
7 https://concepts.app/
8 https://notability.com/
9 https://cloud.huawei.com

Version January 6, 2024 submitted to Electronics 10 of 28

Figure 7. An Example Image with Annotations

consist of labels, four coordinates of bounding boxes, and additional coordinates of head 337

and tail for connectors, which include arrow, double arrow, and line. 338

Please note that the annotation tool we used doesn’t allow distinguishing whether 339

keypoints are necessary for each instance. Hence, we used the coordinates of keypoints as 340

attribute values of bounding boxes during annotation, and manually entered the coordi- 341

nates afterward. After careful checking, the error rate was no more than 0.225% (4/1776). 342

Fig. 7 shows a sample from our hdFlowmind dataset. 343

4.3. Dataset Characteristics 344

Our hdFlowmind dataset comprises 1,776 images, with 17,652 annotated bounding 345

boxes and 10,152 keypoints. Table 2 illustrates that the dataset covers 12 flowmind elements, 346

including 7 basic shapes, 1 text box, and 3 types of connectors. The minimum number of 347

annotations among hdFlowmind images is 3, while the maximum is 93, with an average 348

annotation count of 22.56 per image. On average, each image contains 14.23 elements. 349

Compared to similar datasets, hdFlowmind includes a larger variety of compositions and 350

scenarios, with the most extensive quantity of images and annotations. 351

The challenges in recognizing these images are mainly related to the issues discussed 352

in Section 3, such as different backgrounds (paper, board, electronic devices, etc.) and 353

drawing tools (markers, chalk, pens, etc.), as well as image-capturing problems (blurry 354

images, exposure, etc.). Additionally, the recognition of shapes, connectors, and text also 355

poses significant difficulties. These challenges are comprehensively presented in Table 3, 356

while Fig. 8 displays various types of shapes used in developing our dataset. 357

Our publicly available flowmind dataset has a wide range of elements and a high 358

degree of composition diversity, which makes it valuable for research and development 359

purposes. Additionally, our elements and compositions are practical and natural. 360

4.4. Dataset Splitting 361

To follow the protocol of related hand-drawn diagram datasets [6][16][15], we split 362

the hdFlowmind dataset into three parts: training, validation, and testing. In comparison to 363

professional field datasets, such as BPMN dataset [19], our flowmind dataset exhibits higher 364

variability in terms of composition, backgrounds, and drawing medium. This implies that 365

different flowminds from the same participant differ significantly. Thus, we randomly 366

Version January 6, 2024 submitted to Electronics 11 of 28

Table 2. hdFlowmind elements in the 1,776 annotated images

Element Name Count

Basic shapes

circle 1,039

diamonds 599

hexagon 562

long oval 485

parallelogram 700

rectangle 2,209

trapezoid 460

triangle 602

Text textblock 5,920

Connectors

arrow 3,219

double arrow 634

line 1,223

Maximum of annotations per image: 93

Minimum of annotations per image: 3

Average of annotations per image: 22.56

Average of element per image: 14.23

Table 3. Statistics of challenges posed by different external features in our dataset

Group type count

background

whiteboard 54

blackboard 48

grid paper 224

ruled paper 171

brown paper 200

white paper 155

digital 638

single 485

drawing tools

marker 54

chalk 48

red pen 4

blue pen 31

black pen 681

electronic pen 1,123

Other
motion blur 158

exposure 7

Version January 6, 2024 submitted to Electronics 12 of 28

Figure 8. Examples of different hand-drawn shapes

Figure 9. Examples of Basic Geometric Shapes

divided the dataset into three parts with a 6:2:2 ratio, i.e., the training set contains 775 367

samples, the validation set has 258 samples, and the test set has 258 samples. 368

f, to enhance the recognition accuracy of basic shapes with less frequency, we included 369

an additional training image containing 107 parallelograms, 94 hexagons, 93 rhombuses, 370

102 trapezoids, 89 triangles, and a total of 485 basic images as depicted in Fig. 9. By adding 371

this extra image, the ratio of train/validation/test sets became 1260:258:258. We assessed 372

the impact of these auxiliary images on the training results in Section 6. 373

5. Methods 374

This section describes the Flowmind2digital method for creating digital flowmind 375

diagrams on PPT and Visio from hand-drawn inputs. As shown in Fig. ??, Flowmind2digital 376

consists of two main components: object & keypoint detection, and post-processing. 377

Keypoint detection 378

5.1. Object & Keypoint Detection 379

Mask-RCNN 380

The Mask-RCNN is a neural network approach based on the Faster-RCNN and is 381

known for its high accuracy and extensibility, as described by [21]. This approach can also 382

be used for the keypoint detection, as demonstrated in the example of human posture 383

recognition. The two-stage architecture, inherited from Faster-RCNN, provides a robust 384

framework for effectively handling object detection tasks. This accuracy is crucial for tasks, 385

where precise localization of keypoints is paramount. 386

The initial input of Mask-RCNN is an RGB image represented as a three-dimensional 387

array. The first two dimensions correspond to the size of the image, while the third 388

Version January 6, 2024 submitted to Electronics 13 of 28

Figure 10. Overview of our approach: Given a handwritten image, we first perform object detection
for shapes, keypoints and text. Next, we generate the shape and connector based on coordinates
and connection relationships in the relevant software. Then, we adopt a clustering-based automatic
layout algorithm and fill in the corresponding text boxes detected by optical character recognition.
Finally, we generate a visual file of the software.

Figure 11. Schematic of the Recognition Network in Our Model

dimension represents the three color channels: red, blue, and green. The detection process 389

is based on the feature map of the image, which is learned by the backbone network, a FPN 390

network in our application. Multi-scale feature is extracted and fused by up-sampling to 391

combine the semantic and visual information. 392

The Mask-RCNN follows a two-stage process, similar to Faster-RCNN, for object 393

detection. In the first stage, the Region Proposal Network (RPN) generates region proposals. 394

Each proposal represents a bounding box around a region of interest along with a confidence 395

score that indicates whether it belongs to the foreground or background. The second stage 396

of Mask-RCNN involves a ROI (Region of Interest) network that classifies each proposal 397

and refines the bounding box location. The ROI Align mechanism is used to extract a 398

fixed regional feature map that corresponds precisely to the proposal region. This smaller 399

feature map is used to predict refined bounding boxes and a score distribution over defined 400

classes for each foreground proposal. Finally the Mask-RCNN gives an output set of object 401

(x, c, s), where x represents coordinates, c represents the most likely class and s represents 402

the confidence score. 403

Moreover, the ability of Mask-RCNN to perform keypoint detection aligns well with 404

the specific requirements of the application. The mechanism for region proposal generation 405

Version January 6, 2024 submitted to Electronics 14 of 28

in the first stage, coupled with the ROI network in the second stage, enables not only 406

accurate bounding box localization but also detailed keypoint predictions. 407

According to[22][23], we will conduct a comprehensive analysis of trade-offs in the 408

entire system pipeline, considering aspects such as program runtime, memory usage, 409

accuracy, speed, and correctness. Detailed experiments are presented in Section 6 to 410

provide a thorough examination of the rationality behind the utilization of Mask RCNN. 411

Trade-off in Speed and Time Complexity 412

While Mask-RCNN may not be the fastest algorithm, the trade-off in speed is justified 413

by the enhanced accuracy achieved through the two-stage process. The use of the Region 414

of Interest (ROI) Align mechanism contributes to a time complexity suitable for our appli- 415

cation. Comparatively, YOLO[24] may offer faster inference times but at the expense of 416

potential sacrifices in accuracy. 417

Memory Efficiency and Multi-scale Feature Fusion 418

The FPN backbone utilized in Mask-RCNN contributes to effective memory utilization, 419

accommodating the processing of high-resolution images. The multi-scale feature extraction 420

and fusion through up-sampling enhance the model’s ability to capture both semantic 421

and visual information, a feature not explicitly highlighted in some other architectures. 422

DETR[25], while novel in its transformer-based architecture, may have different time 423

complexity considerations as it directly predicts object bounding boxes and classes in a 424

single pass. Due to the parallelization mechanism of multi-heads in the DETR transformer 425

architecture being optimized for GPUs, it cannot run efficiently on lightweight CPUs. 426

Over all, based on previous research work and analysis above, we utilize the Mask- 427

RCNN for our object detection network. 428

Keypoint detection is a popular extension of the Mask-RCNN model. During the 429

second stage, the ROI network is altered to extract keypoints and refine bounding boxes 430

at the same time. The ROI Box-Keypoints network involves two parallel fully connected 431

layers, which are applied after the feature map array is transformed. One of the layers 432

is responsible for refining the bounding box by regression, while the other layer treats 433

keypoint detection as a pixel-level classification problem. Each arrow instance is assigned a 434

one-hot mask, with the keypoint pixel defined as foreground and the rest as background. 435

We utilized a pre-trained FPN-resnet50 model, which was originally developed for 436

human posture recognition. The selection of FPN-resnet50 as the backbone is motivated 437

by its well-established balance between high accuracy and robustness. Additionally, it 438

facilitates seamless experimental comparisons with other models of a similar class. But we 439

customized it for our purpose. Specifically, we set the number of keypoints to be detected 440

as two. This was the basic number needed to ensure that the detector can identify the 441

connection between two shapes. The path of the connector can be easily adjusted through 442

automatic typesetting or manual post-processing, that we need no additional keypoints 443

to indicate the specific path of the connector. Therefore, two keypoints are sufficient to 444

capture the composition of the flowmind diagram. 445

5.2. Post processing 446

After obtaining the results of identifying key points for objects and connectors as 447

described earlier, our attention turns to the human-computer interaction process. We aim 448

to create a technique that enables the conversion of these results into a digital format. This 449

involves generating files such as .pptx or .vsdx from the output. 450

Our approach to accomplishing this task involves the creation of a post-processing 451

procedure, as described in Section 2. This procedure can be broken down into four distinct 452

parts. 453

Firstly, the shape generation component uses Visio and PPT to create the corresponding 454

shapes at the coordinates detected during keypoint recognition. 455

Secondly, the connection determination component identifies the exact point on the 456

shape where the detected connector should connect, based on the keypoint information. 457

Version January 6, 2024 submitted to Electronics 15 of 28

Thirdly, the text content component assigns labels to the shapes and connectors, 458

generates text boxes, and extracts the relevant content using OCR software. 459

Lastly, the automatic typesetting component adjusts the sizes and positions of the 460

shapes based on intelligent clustering, and generates the final output. 461

Shape generation 462

As discussed in Section 2, we utilize the python-pptx library to establish communica- 463

tion with Microsoft Powerpoint. This library provides Python classes to interact with the 464

elements present in a PPT document such as slides, shapes, and connectors. In the case of 465

Visio, since there is no suitable toolkit available, we use the win32com10 library to interact 466

with the program. The Visio template is read and placed onto the created page object. 467

As mentioned in Section 2, we use the python-pptx library to interface with Microsoft 468

Powerpoint. The elements of slides, shapes or connectors in ppt document is operated 469

as python classes. Since there’s no proper toolkit to interface with Visio, we use the 470

win32com to operate it with this program. The template in Visio is read and placed onto 471

the created page object. To ensure proper formatting, we need to convert the coordinates of 472

the bounding box (x0, y0, x1, y1) to the format of (xc, yc, H, W) using the following formula: 473

(x0, y0, x1, y1)→ (xc, yc, H, W) s.t.



xc =
|x0+x1|

2

yc =
|y0+y1|

2

W = |x0 − x1|

H = |y0 − y1|

(1)

Connection determination 474

After generating the Flowmind components, the next task is to link the connectors to 475

the keypoints on the shape. In both Visio and PPT, if a connector is generated solely based 476

on coordinates, it will remain fixed in its original position even if the shape is moved. To 477

establish a true relationship between the shape and the connector, it is essential to connect 478

it with the pre-defined keypoints on the shape. Figure 12 illustrates the difference between 479

the two methods of connector generation based on coordinates and connection. 480

Figure 12. The difference of two generation methods based on coordinates and connection

Our algorithm aims to establish a connection between connectors and shapes by 481

calculating the Euclidean distance between their keypoints. Euclidean distance serves as 482

an intuitive and effective metric, accurately expressing the distance between keypoints 483

10 https://pypi.org/project/pywin32/

Version January 6, 2024 submitted to Electronics 16 of 28

of connectors and various geometric shapes. Its application facilitates the calculation of 484

distances between connectors and candidate points on shapes, derived from the geometrical 485

relationship between bounding boxes and standardized shapes. This approach, which 486

includes calculating distances for polygons, identifying candidate points for non-polygons, 487

and selecting the nearest shape for each keypoint, demonstrates robustness and adaptability 488

in handling diverse geometric scenarios. The flexibility of Euclidean distance enhances the 489

algorithm’s ability to accurately model and understand geometric relationships, ensuring 490

a robust and reliable approach for connector and shape connection in the recognition of 491

complex hand-drawn sketches. The distance calculation between connectors and various 492

types of geometric shapes can be derived using the geometrical relationship between the 493

bounding box and the standardized shape, as shown in Fig. 13. 494

Assuming that the detected shapes in bounding box is set in an standardized orien- 495

tation (with a horizontal base), the process first calculate the candidate points on each 496

shape, referring to the connectable anchors on PPT and Visio shapes. Secondly for each 497

connector keypoint, it identifies the nearest candidate point on all shapes. As for polygons, 498

it computes the vertical distance from the keypoint to each edge (as depicted in Fig. 13a 499

d1, d3). Note that, if the foot point of that vertical line lies on the extension of the edge, it 500

chooses the shortest distance from the keypoint to terminal point of the edge as the shortest 501

distance instead (as depicted in Fig. 13a d2, d4). For non-polygons, it identifies n candidate 502

points on the shape (according to the connection rules of PPT and Visio) and specifies that 503

the keypoint can only be connected to them. For instance, the candidate points of a circle 504

are Up, Down, Left, Right, Top left, Bottom left, Top right, and Bottom right. Lastly, for each 505

keypoint, the shape with the nearest candidate point is selected as the connected object (as 506

depicted in Fig. 13b). 507

Figure 13. Calculation of distance between connectors and different types of geometry shapes

Text content 508

In this step, our approach aims to recognize specific content within the text boxes. The 509

input consists of a set of coordinates for each textbox, T, and the image feature map, F. The 510

output includes the recognized content set, C, and a confidence score, S. Instead of training 511

an OCR model from scratch, we use an existing OCR model, which offers superior accuracy 512

and speed. The OCR model is also a two-stage method that generates bounding boxes in 513

regions of interest and then recognizes the specific content of each bounding box. However, 514

due to the challenges mentioned in Section 3, its performance on hand-drawn flowminds 515

is considerably limited. Therefore, we apply OCR in each text box identified previously, 516

which greatly improves the accuracy of text recognition, as demonstrated in Section 6. 517

To address merging or splitting problems in text box recognition, we utilized the 518

method proposed in Arrow-RCNN [4] to create a unified text box with a union bounding 519

box that covers the corresponding text boxes. To determine which shape or connector a 520

textbox corresponds to, we calculated the intersection over Union (IoU) between each text 521

box and all bounding boxes of shapes. As mentioned in the shape recognition challenge, 522

an IoU threshold of 80% was set. If there exists a shape that has the highest IoU rate over 523

Version January 6, 2024 submitted to Electronics 17 of 28

the threshold for a detected text box, its content is filled into that shape. Otherwise, it is 524

considered as an independent text element. As connectors have high flexibility, we created 525

the text box through the corresponding bounding box to fill in its content. 526

Automatic typesetting 527

The steps described earlier have established the inclusion and graph relations between 528

shapes, connectors, and text boxes, primarily realizing the visualization. However, a 529

precise copy of the rough sketch may not always reflect the user’s intention. For instance, 530

the rectangles in Fig. 14 are meant to be of the same size, but due to the visualization 531

being based on the shape of the bounding box, there may be slight variations in the actual 532

digitization. Additionally, the rectangles should be vertically aligned, but the digitized 533

coordinates may not reflect this due to differences in the actual sketch. 534

Figure 14. Automatic Typesetting: Intelligent Scaling of Shape Sizes, Followed by Automatic Hori-
zontal and Vertical Alignment

The aforementioned deviation can pose problems, especially when creating a digital 535

flowchart automatically. In a manually created flowchart, the consistency of a set of shapes 536

can be ensured by copying and pasting. However, if the flowchart is already generated on 537

the software, adjustments to individual shapes have to be made separately as deleting or 538

replacing any shape can affect the established relations. Hence, an automatic typesetting 539

algorithm that can assist in intelligent typesetting becomes particularly important. 540

To achieve this, we have implemented a two-stage clustering model that employs the 541

Canopy and K-means algorithms. The number of clusters is determined through Canopy 542

clustering, which is then followed by K-means to produce the final result. Moreover, 543

we have utilized these clustering algorithms to adjust the size of shapes to account for 544

variations in the input flowminds. Generally, the clustering algorithm is applied twice for 545

automatic resizing and alignment. A summary of the clustering algorithm is depicted in 546

Fig. 14. 547

To resize the editable graphics, we utilize a two-stage clustering model based on 548

Canopy [cite] and K-means algorithm. Firstly, we use the length and width of the bounding 549

box as clustering features. We set the thresholds of the Canopy algorithm and consider 550

shapes with similar length and width as a cluster in coarse clustering. This provides us 551

with a clustering reference value K. In the next stage, we perform fine-grained clustering 552

using K-means algorithm, and calculate the average size of the bounding box for each 553

cluster. This average size is used as the new size for the shape cluster. We perform this 554

resizing process twice, to ensure automatic resizing and alignment of the shapes. 555

Moreover, Canopy clustering stands out by eliminating the need for a pre-specified 556

k value, making it exceptionally practical. Despite potentially lower accuracy compared 557

to other clustering methods, Canopy excels in speed, making it a valuable choice. Hence, 558

Canopy clustering is strategically applied for preliminary coarse clustering, allowing the 559

machine to autonomously determine the K value and approximate K initial centroids. 560

Subsequently, this is followed by a more detailed fine clustering using K-means. The 561

Canopy+K-means clustering strategy not only balances speed and accuracy but also proves 562

effective in the context of automatic typesetting, emphasizing the machine’s ability to 563

specify the number of clusters in subsequent work. 564

Version January 6, 2024 submitted to Electronics 18 of 28

To achieve alignment, the four coordinates of the bounding box of each shape cluster 565

obtained in the first stage are used as clustering features. The horizontal and vertical 566

coordinates are clustered separately using the same two-stage approach as for resizing. 567

The average coordinates of each cluster are then determined as the final layout result. The 568

specific threshold parameters for the Canopy algorithm will be described in more detail in 569

Section 6.1. 570

6. Evaluation 571

To evaluate and analyze the performance of our methods, we trained and optimized 572

the model on our hdFlowmind dataset. A detailed description about evaluation setup, 573

experimental contents, results, and analysis will be provided in this section. 574

6.1. Evaluation Setup 575

This section will provide an in-depth explanation of the evaluation setup for our 576

implementation, including the metrics and baseline used to assess the performance of our 577

model. Researchers can access our code demo on GitHub11. 578

Implementation 579

Our neural network is based on the framework of Detectron2, which utilizes Mask- 580

RCNN and heat map keypoints detection with pytorch. For our experiments, we utilized 581

the Keypoint-ResNet-50-FPN11 backbone, which is relatively fast and balances speed 582

and accuracy effectively. We initialize the model weights using the pre-trained model 583

from the COCO dataset, obtained from the Detectron2 model zoo. When it comes to 584

hyperparameters, we mostly follow the default Detectron2 configuration for training. 585

Specifically, the top-k anchor in train and test are 1500 and 1000 respectively in RPN, the 586

base learning rate is 0.02, the smooth β in l1 is 0.5. Please refer to Detectron2 configs for 587

more hyperparameters and architecture settings. For gradient descent, we use Adam with 588

80k iterations and a batch size of 4, allowing the model to see 320k augmented images (80k 589

batches of size 4). This process takes approximately 8 hours on a GeForce RTX 3090 with 590

16GB memory. During training, the basic learning rate is set to the default value of 0.00025 591

for Adam’s adaptive change of Detection2. 592

For post-processing, we utilize Baidu’s offline service paddleOCR12, specifically the 593

PP-OCRv3 version, which supports both Chinese and English languages. This service is 594

based on the PaddlePaddle framework and prioritizes precision and speed balance. To 595

achieve this, it employs model slimming and depth optimization techniques. Since it is 596

deployed in an offline environment, users can choose whether or not to perform character 597

recognition. For automatic typesetting, we use the T1 and T2 parameters of Canopy, as 598

shown in Table 4. For Kmeans clustering, we use the default parameters of the sklearn 599

module. 600

Table 4. Clustering parameters

Canopy T1(inch) T2(inch)

First Clustering 1 min length2+width2

1.618

Second Clustering 0.8 min length
1.618 ,min width

1.618

Another crucial aspect of our method involves performing non-maximum suppres- 601

sion between different classes to address the issue of excessive IoU. To assess its impact 602

within our specific domain, we conducted an ablation study, comparing two models: one 603

11 https://github.com/cai-jianfeng/flowmind2digital.git
12 https://www.paddlepaddle.org/

https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml

Version January 6, 2024 submitted to Electronics 19 of 28

employing the default method from Detectron2, and the other utilizing an additional NMS 604

between different classes after prediction to filter the results twice. 605

Furthermore, to evaluate the effect of adding single basic shapes to the training set, 606

we conducted another ablation experiment that did not involve changing the parameters 607

of other methods. This experiment involved comparing the changes in each metric before 608

and after adding 485 images, as discussed in Section 4. 609

Metrics 610

Object detection: To assess the performance of object detection, we utilize the same 611

metrics as in the relevant sketch recognition approach[4]. A bounding box is considered 612

a true positive only if it is categorized correctly and overlaps fully with the ground-truth. 613

We set the IoU threshold to 50%, following previous works [4][19]. We then use these 614

true positives as the predicted object detection results and calculate the standard recall, 615

precision, and F1 scores with an IoU threshold of 70% during the calculation process. 616

Additionally, we calculate the diagram accuracy (DA) [4], which represents the proportion 617

of images with completely correct object detection in all datasets, i.e., standard recall and 618

precision are both 1 when the IoU threshold is 80%, and the number of precision boxes and 619

ground-truth boxes is equal. Since some images have zero predicted objects, the calculation 620

of precision can result in division by zero, causing F1 and precision to return N/A for a 621

single image. These images are ignored when calculating the average value. Similarly, 622

when zero annotated objects are selected, F1 and recall return N/A. However, this situation 623

does not arise in the training data, so it does not impact the calculation of diagram metrics 624

for training and validation sets. Finally, when precision and recall are both zero, F1 is 625

defined as 0. 626

Connector Keypoints: For the evaluation of the performance for connector recognition, 627

we refer to the relevant work [19]. The detection of keypoints by neural network may have 628

some error in the circular domain. But in fact, we are concerned about the connectivity 629

of keypoints with shapes, that is, whether a group (x f rom, y f rom, xto, yto) can correctly find 630

the connection between the shapes. Therefore, we apply the same post-processing method 631

to find the nearest shape for train and test, which is mentioned in Section 4.2 to obtain 632

the ground-truth connection and predicted connection of a connector. Then the standard 633

Recall, Precision and F1 scores of the connector category are calculated in the same way as 634

the object detection. In this context, true positive is defined as the correct recognition and 635

full overlap of the three connector categories, where the two connected shapes have the 636

same precision and true label. 637

Character recognition: Section 5.2 discusses the comparison between OCR for the 638

entire image and OCR for the identified text box, which is also an essential aspect. To assess 639

the performance of both methods under various scenarios outlined in Challenges (Section 640

3), we utilize the character error rate CER [26], which is based on the editing distance [27], 641

for each text box string. However, since the dataset contains mathematical formulas and 642

symbols, there are no complete Chinese and English character labels available. Thus, we 643

randomly select 50 representative images from the dataset and manually annotate them to 644

evaluate the performance. 645

Baselines 646

In order to demonstrate the effectiveness of our approach, we conduct a comparative 647

analysis with related studies. We find that BPMN with strict graphic definition, which is 648

heavily focused on the professional domain, is not an ideal baseline. Instead, we choose 649

Arrow-RCNN as it is similar to our work and has a hand-drawn sketch of almost all 650

classes. Accordingly, we train and evaluate Arrow-RCNN models on the hdBPMN dataset 651

to compare them with our Flowmind2digital model under various scenarios outlined in 652

Section 3. For Arrow-RCNN, we adhere to its default image augmentation methods and 653

training parameters. 654

Version January 6, 2024 submitted to Electronics 20 of 28

In order to test our hypothesis about the dataset, we conducted an experiment where 655

we used the same model and replaced various datasets to evaluate the effectiveness of 656

our hdFlowmind. We divided the experiment into two groups: one group was trained 657

using a pre-trained model on flowmind and fine-tuned on the Handwritten-diagram- 658

dataset, while the other group was trained without a pre-trained model. Our objective was 659

to demonstrate the importance of our dataset and show that pre-trained models can be 660

beneficial for training even in different domains. 661

6.2. Results 662

This section presents the evaluation results of our proposed Flowmind2digital model 663

and our hdFlowmind dataset. First of all, the overall results are displayed, followed by the 664

detailed results for each part of our model. Next, we illustrate the ablation studies. Finally, 665

the time-memory complexity analysis and post-processing software docking are presented. 666

Overall results and baselines 667

Figure 15. Losses During the Whole Training Process on hdFlowmind

Fig. 15 shows the individual loss terms and metrics throughout the 80k iterations 668

on the hdFlowmind dataset. It can be clearly observed that the loss mainly stems from the 669

localization of connector keypoints, and after 80k iterations of training, the initial intense 670

fluctuations tend to become stable. The loss of the RPN network, bounding box regression 671

and classification is below 0.2 and gradually tends to fit as the training progresses. 672

The overall results and metrics of evaluation are presented in Table ?? compare with 673

Arrow-RCNN. For certain classes, the F1 score exceeds the range of Recall and Precision, 674

due to one of them being N/A. In this case, the F1 score is also N/A and is not included 675

in the average calculation, resulting in this outcome. Note that in the experiment, the 676

calculation method of the four metrics is weighted average by the number of categories. 677

As shown in Table ??, our approach has a better ability to capture complex scene features, 678

with the total diagram accuracy that is 20% higher than that of Arrow-RCNN, and other 679

metrics that are about 15% higher. Further comparison of recognition examples reveals that 680

our method performs significantly better than Arrow-RCNN in scenarios with more noise, 681

such as over-exposure and shadows. In terms of arrow recognition, Arrow-RCNN has 682

poor performance in identifying multiple arrows or intersecting arrows. In terms of shape 683

and text recognition, it struggles to distinguish styles with overlapping strokes. Overall, 684

our method demonstrates stronger robustness and better performance in fine-grained 685

recognition. 686

Next, we fine-tuned a pre-trained model using FC_A, FC_B, F_A and hdBPMN 687

datasets on our hdFlowmind dataset. The performance of the fine-tuned models was 688

compared with the models trained directly on these datasets without pre-training. The 689

model architecture and parameters used in the training process were identical to those 690

used in the training of Flowmind2digital. The iterations for both experimental groups was 691

set to 5,000. From training process (Fig. 16), it can be inferred that using the hdFlowmind 692

Version January 6, 2024 submitted to Electronics 21 of 28

Table 5. Overall approach results for the test set

Shape Connector Text Total

Approach Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 Diagram accuracy

Arrow R-CNN [4] 0.7875 0.8250 0.8057 0.7342 0.6964 0.7147 0.7789 0.7472 0.7627 0.764 0.718 0.754 0.2%

Flowmind2digital 0.9698 0.9544 0.9760 0.8085 0.7577 0.8136 0.8472 0.8247 0.8407 0.885 0.865 0.873 22.5%

Figure 16. Comparison of Training Curves with and without Fine-tuning

pre-trained model for fine-tuning on the FC_A dataset greatly accelerates gradient descent 693

and loss convergence compared to not using a pre-trained model. Subsequently, we present 694

a comparison experiment (Table 6) for fine-tuning on the aforementioned dataset. After 695

conducting multiple experiments and taking the average results, it was found that using 696

the pre-trained model provides a certain degree of improvement in F1 score and diagram 697

accuracy, especially for the FCA and FCB datasets, which are both process diagrams, with 698

an improvement of up to 6%. For the FA dataset in the finite automata domain, due to the 699

small number of categories, it quickly fitted with only 5,000 iterations, and the pre-trained 700

model improved the metrics by approximately 1-2%. However, for the BPMN scenario 701

with strict symbol standards, the 5,000 iterations were clearly insufficient for the model 702

converge, and the hdBPMN2021 dataset’s lack of text categories resulted in only a 1-2% 703

improvement in recognition accuracy with the pre-trained model. Overall, our pre-trained 704

model exhibits good generalization in the sketch domain, fully demonstrating the richness 705

and diversity of the scenarios in our dataset. 706

Table 6. Comparison of metric results for fine-tuning experiment on different test set of our model

Dataset
Pre-train on hdFlowmind No fine-tuning

F1 DA F1 DA

FA 0.9492 0.2143 0.9351 0.1305

FCA 0.8352 0.0585 0.8064 0.0350

FCB 0.9066 0.1326 0.8425 0.0408

hdBPMN 0.4347 - 0.4251 -

*DA=Diagram Accuracy

Object detection 707

Table 7 reports a detailed performance of our object detection classes in a manner 708

that describes the weighted average metrics of each shape. The results of our experiments 709

indicate that our model is capable of accurately recognizing the majority of the primary 710

shapes with high accuracy, achieving a recall rate, precision rate, and F1 score around 95%. 711

For certain categories, due to their low occurrence in the test set, the aforementioned issues 712

Version January 6, 2024 submitted to Electronics 22 of 28

Table 7. Object detection results per class obtained for the test set of our model

Class Rec. Prec. F1 DA Count

Circle 0.979 1.000 0.986 0.935 209

Diamond 0.985 0.978 0.980 0.940 96

Long oval 0.992 0.980 0.981 0.933 97

Hexagon 0.994 1.000 0.996 0.949 111

Parallelogram 0.959 0.991 0.969 0.893 122

Rectangle 0.986 0.961 0.968 0.720 465

Trapezoid 0.977 0.970 0.971 0.940 71

Triangle 0.981 0.976 0.974 0.902 127

WA 0.9824 0.97807 0.976 0.8525 1298

*DA = Diagram accuracy, WA = Weighted average

Figure 17. Left: Shapes that are extremely easy for humans to confuse (long ovals and rounded
rectangles). Right: The recognition result effectively solves the challenges mentioned earlier.

related to F1 calculation surpass recall and precision rates, and thus, further evaluation is 713

needed. 714

Post-hoc analysis of the results reveals that our target detector performs excellent 715

in different backgrounds and handwriting scenarios, and it can handle the difficulties 716

mentioned in Section 3, such as overlapping circles, crossing, and text overprinting. How- 717

ever, the most challenging task is to correctly distinguish certain categories, especially the 718

confusion between rounded rectangles and long ovals, as depicted in the Fig. 17. This is 719

not surprising, given the subjectivity of the drawings, and recognizing these differences 720

between hand-drawn models is also a difficult task for humans, especially in terms of the 721

variations in curvature. 722

Connector recognition 723

Table 8. Connector and keypoints detection results per class obtained for the test set of our model

Class Rec. Prec. F1 DA Count

Arrow 0.848 0.836 0.836 0.559 611

Line 0.855 0.845 0.845 0.714 157

Double arrow 0.750 0.744 0.743 0.525 264

WA 0.8240 0.8138 0.8136 0.5739 1032

*DA = Diagram accuracy, WA = Weighted average

Table 8 further demonstrates the superiority of our model and its versatility in post- 724

processing determination of connection as a whole. According to the first three metrics in 725

the experimental results, arrows and lines are more easily recognized than double arrows, 726

but the diagram accuracy is skewed due to the low number of line samples in the test set. 727

The detection performance of double-arrows is not as good as the other two, which can be 728

Version January 6, 2024 submitted to Electronics 23 of 28

attributed to the triangular lines at the arrowhead that often overlap with shapes or are 729

perceived as part of other shapes. Furthermore, the double arrow possesses features of 730

both arrow and line, which increases the difficulty of recognition. This provides insight 731

into future improvement efforts. 732

Upon further analysis, our recognizer is able to handle various challenges such as 733

many-to-many connectors that cross the entire diagram with relatively good performance. 734

However, for connections that are very close to each other, our model demonstrates limited 735

ability to handle and may treat additional strokes as part of the error or as combinations of 736

other shapes, as shown in Fig. 18. A reasonable explanation for this phenomenon lies in the 737

intricacies of proximity-based spatial relationships. When connectors are very close, the 738

model might face difficulties in precisely separating them, as the visual features become 739

more challenging to differentiate. Additionally, the proximity of strokes may introduce 740

ambiguity, leading to potential errors in the recognition process. 741

Figure 18. Left: Successfully recognized large-span arrows and various fine-grained graphics. Right:
Missed the short connecting line selected by the red oval.

In conclusion, our method consistently achieves metrics approaching 80% on connec- 742

tors, highlighting its efficacy in handling intricate visual relationships, while the recognition 743

performance for connectors may be comparatively lower than that of shapes owing to 744

their inherent flexibility and diversity. This underscores the distinct advantages of our 745

approach, particularly in addressing the complexities of scenarios outlined in Section 3, 746

such as crossings. 747

Textbox recognition 748

Table 9. Comparison of using textbox selection and directly using OCR

Class Rec. Prec. F1 Diagram accuracy

Text box 0.8509 0.8354 0.8407 0.2913

Metric Specified region Whole region

CER 8.5% 35.7%

As shown in Table 9, the results of employing the Baidu PaddleOCR service for 749

handwriting recognition are poor. As demonstrated in Section 3, the main reason of low 750

accuracy is the inability to distinguish between handwritten text and graphical intersections. 751

However, this is not the case for our method, as the first stage of regions of interest 752

identification directly frames the scope. At this point, OCR is used to decode the text in the 753

specified region, and CER has seen a significant improvement, performing well on isolated 754

text boxes. This means that if the OCR prediction is accurate and can reach the level of 755

humans, the detected text block (region of interest) will also be accurate. 756

It should be noted that our method only achieves a recognition accuracy of 29% for 757

text boxes in images, particularly for the recognition of mathematical symbols, brackets, 758

operators, etc. This warrants further investigation. 759

In conclusion, the majority of errors directly or indirectly incurred during the hand- 760

written text block recognition process are due to OCR service errors, and fine-tuning of the 761

ROI plays a significant role. However, this does not indicate that existing OCR services 762

Version January 6, 2024 submitted to Electronics 24 of 28

have major flaws, because high accuracy can still be achieved for pure text recognition in 763

small areas. 764

Ablation study 765

The results of our ablation study in Table 10 show the benefits of adding images of 766

single basic shapes to the training set, improving the Recall (from 0.792 to 0.889), Precision 767

(from 0.784 to 0.872) and F1-score (from 0.786 to 0.879) to increase by 10%. In particular, it 768

greatly improves the diagram accuracy over 20%. From the training process, these images 769

greatly alleviates the over-fitting situation during model training, especially for connectors. 770

It is, therefore, not necessary to excessively pursue sophisticated images when collecting 771

datasets, and single target recognition is also promotional for machine learning. 772

Table 10. Ablation study conducted on the validation set

Method Rec. Prec. F1 Diagram accuracy

NMS 0.792 0.784 0.786 0.066

Add basic images 0.894 0.864 0.877 0.275

NMS+Add basic images 0.889 0.872 0.879 0.283

The results of applying NMS between different classes is not as effective as the former. 773

However, it is obvious from Table 10 whether NMS between different classes improves 774

Precision-score and reduces Recall-score around 0.01. Further, this also improves the 775

diagram accuracy. This experimental result is consistent with our intuition. NMS reduces 776

the number of redundant bounding boxes, and also removes true positive bounding boxes, 777

leading to the decline of recall rate, and vice versa, resulting in the improvement of precision. 778

In the field of sketch, because of the simple shape and the arbitrariness of the user, it is 779

common for the same basic strokes to have two categories of high accuracy at the same 780

time. In the case of multiple connectors, additional detected lines are often generated due 781

to crossing and masking. Therefore, in the domain of the flowmind, this assumption works 782

effectively. Fig. 19 shows an example of how this method works on sketches.

Figure 19. Non-maximum suppression between different categories effectively solves the problem of
many-to-many connectors being recognized multiple times and overlapping.

783

Running time and memory 784

Figure 20. Median runtime measures obtained for the validation set

Version January 6, 2024 submitted to Electronics 25 of 28

Fig. 20 illustrates the runtime of the components of Flowmind2digital. Given the 785

inconvenience of installing the Conda environment for actual users, we tested using a 786

CPU (Interl(R) Core(TM) i5-8300H CPU @ 2.30GHz). Given the image to be processed 787

(3000*4000 pixels), it first goes through the network prediction module (9481ms), followed 788

by the relation analysis and graph construction (177ms), automatic typesetting (503ms), 789

and the optional OCR module (3090ms), and finally the integrated output (36ms). The 790

whole process took 13287ms, with most of the time spent on the two neural modules. The 791

observed processing time of approximately 10 seconds represents a favorable trade-off 792

between accuracy and speed on a standard CPU. This duration is considered a well- 793

balanced solution for practical applications, aligning with the need to efficiently process 794

and interpret visual information without compromising on detection precision. If we use 795

GPU (e.g. GeForce RTX 3090) in inference, the whole process can be completed within one 796

second. 797

Fig. 21 shows the memory usage of Flowmind2digital over time. In monitoring memory 798

usage, it is noteworthy that the initialization time of Python-related modules extends the 799

overall processing time beyond the 10-second mark. The peak memory is around 3500MB 800

at 15.3s, which occurs during the final integration of the module outputs. Most of the 801

memory consumption still occurs in the neural network module, in line with the time 802

consumption.

Figure 21. Memory Analysis of the Whole Process
803

Software Results Display 804

Finally, we display the final result of the integration of the user-inputted raw sketch 805

image with the PPT/Visio software. Note that, based on the flexibility and standardization 806

of both software, our result can only serve as a preliminary reference for further refinement 807

by the designer. In PPT, the shape color is based on the principle of category consistency, 808

while the texture and outline filling follow the default template. In Visio, we initially design 809

the interface in blue as the main color scheme. The font and line width adapt to the size of 810

the input graphic and the bounding boxes. The output visualization is shown in Fig. 22.

Figure 22. Visualization of the Final Software Results
811

Version January 6, 2024 submitted to Electronics 26 of 28

7. Discussion 812

In this section, we discuss the implications, limitations, and provide reference insights 813

for future research work. 814

Implications. Our work extends from the specific domain of hand-drawn diagrams, 815

such as BPMN, UML, and flowcharts, and generalizes further by considering the charac- 816

teristics of natural hand-drawn diagrams. We combine the multi-connection features of 817

mind maps with the geometric shapes that are commonly used and creatively varied in 818

composition to better reflect the natural hand-drawn features. 819

Moreover, our approach establishes a more novel, convenient, and effective compre- 820

hensive processing mode. It enables brainstorming and creation on a whiteboard or even a 821

blank sheet of paper, followed by direct digital acquisition, collection, and storage of com- 822

position information. Connection analysis and automatic layout are then performed, and 823

finally, a document is generated using OCR services. The entire process is fully automated 824

and intelligent. It is worth noting that because the OCR service is independent, the text 825

recognition performance can be further improved as existing natural language processing 826

models evolve in the future. 827

In addition, we have created the hdFlowmind dataset, which is the first object and 828

keypoint detection dataset covering both mind maps and flowcharts. It contains thousands 829

of images and tens of thousands of annotations, and has a wide range of applications. It 830

can effectively address the problems mentioned in the challenge. Furthermore, we found 831

that adding simple basic shapes to the dataset can effectively solve the overfitting problem 832

during the training process for hand-drawn sketches (without stroke sequence information), 833

which contain far less information than RGB images. 834

Limitations. Objectively speaking, our model also has a series of limitations. Firstly, 835

our post-processing relies on specific software interfaces, e.g. if Microsoft PPT/Visio is 836

no longer used as the most common presentation software, the post-processing work will 837

need to be further modified for integration. To expand the model’s application scope and 838

integration into standardized BPMN scenarios, professional visualization software needs 839

to be integrated. Even when the software does not provide ready-to-use documentation, 840

library functions need to be written at the operating system level. 841

Secondly, although we believe that our dataset scenarios have high external validity 842

and cover a variety of application scenarios, the images in the dataset are mainly collected 843

from various scenarios in university life, and the overall image features and quality differ 844

significantly. Therefore, in practical use, people may still encounter more complex situa- 845

tions, such as multiple people using pens of various colors to draw on the same whiteboard 846

in a messy way. 847

Finally, limited by the diversity of connector paths, our model can only recognize 848

the connection relationships and cannot distinguish between the forms of a path, such as 849

straight or curved arrows. Moreover, the electronic version of the connector also depends 850

on the template of the relevant visualization software and cannot truly fit the path of the 851

hand-drawn arrow. This is also a major bottleneck in all sketch recognition works and 852

requires further research in the future. At the same time, different expressions of the same 853

geometric figure is also be a big challenge, which can enrich our graphic material library, 854

such as isosceles triangle, right triangle, etc. 855

8. Conclusion 856

In this paper, we focus on the recognition problem of hand-drawn sketches. We com- 857

bine the characteristics of flowcharts and mind maps, and propose our Flowmind2digital 858

method on the basis of existing solutions. By introducing OCR and integrating with 859

Microsoft Power Point/Visio visualization software, it is the first comprehensive, fully 860

automated sketch recognition method. To enrich application scenarios and better fit the 861

characteristics of hand-drawn sketches by natural persons, we created the "hdFlowmind" 862

dataset, which consists of 1776 images and tens of thousands of annotations, solving the 863

recognition difficulties encountered in actual use due to messy sketches. In the experi- 864

Version January 6, 2024 submitted to Electronics 27 of 28

mental evaluation process, we not only demonstrated the effectiveness of the hdFlowmind 865

dataset, but also showed that Flowmind2digital is very accurate, versatile in use scenarios, ca- 866

pable of handling fine-grained recognition problems in complex sketches, and consistently 867

outperforms existing algorithms. 868

Next, we have identified several directions for future work. First and foremost, 869

increasing recognition accuracy and speed are undoubtedly the most importance. On 870

the one hand, we can continue to enrich the breadth of the dataset, covering a wider 871

variety of scenarios and increasing the number of shape categories. On the other hand, 872

for connector recognition, research can be conducted based on its path characteristics. In 873

text recognition, further collaboration with the NLP field will be pursued to handle more 874

detailed information such as rotation angles of handwritten characters. Second, exploring 875

the combination of the flowmind pre-trained model with existing research in other symbol 876

recognition fields (such as BPMN) is also an interesting topic. The merging of research 877

in various fields of offline sketch recognition will help deepen our understanding of the 878

universality of human sketches (e.g., connection relationships). Finally, increasing the 879

practicality of Flowmind2digital in practice is also necessary. In the future, it can be inherited 880

by more software in various fields, providing a variety of intelligent visualization solutions. 881

References 882

1. Gosala, B.; Chowdhuri, S.R.; Singh, J.; Gupta, M.; Mishra, A. Automatic classification of UML 883

class diagrams using deep learning technique: convolutional neural network. Applied Sciences 884

2021, 11, 4267. 885

2. Schäfer, B.; van der Aa, H.; Leopold, H.; Stuckenschmidt, H. Sketch2BPMN: Automatic 886

recognition of hand-drawn BPMN models. In Proceedings of the Advanced Information 887

Systems Engineering: 33rd International Conference, CAiSE 2021, Melbourne, VIC, Australia, 888

June 28–July 2, 2021, Proceedings. Springer, 2021, pp. 344–360. 889

3. Schäfer, B.; van der Aa, H.; Leopold, H.; Stuckenschmidt, H. Sketch2BPMN: Automatic 890

recognition of hand-drawn BPMN models. In Proceedings of the Advanced Information 891

Systems Engineering: 33rd International Conference, CAiSE 2021, Melbourne, VIC, Australia, 892

June 28–July 2, 2021, Proceedings. Springer, 2021, pp. 344–360. 893

4. Schäfer, B.; Keuper, M.; Stuckenschmidt, H. Arrow R-CNN for handwritten diagram recognition. 894

International Journal on Document Analysis and Recognition (IJDAR) 2021, 24, 3–17. 895

5. Awal, A.M.; Feng, G.; Mouchere, H.; Viard-Gaudin, C. First experiments on a new online 896

handwritten flowchart database. In Proceedings of the Document Recognition and Retrieval 897

XVIII. SPIE, 2011, Vol. 7874, pp. 81–90. 898

6. Bresler, M.; Prŭša, D.; Hlaváč, V. Online recognition of sketched arrow-connected diagrams. 899

International Journal on Document Analysis and Recognition (IJDAR) 2016, 19, 253–267. 900

7. Gervais, P.; Deselaers, T.; Aksan, E.; Hilliges, O. The DIDI dataset: digital ink diagram data. 901

arXiv preprint arXiv:2002.09303 2020. 902

8. Yu, B.; Cai, S. A domain-independent system for sketch recognition. In Proceedings of the 903

Proceedings of the 1st international conference on Computer graphics and interactive techniques 904

in Australasia and South East Asia, 2003, pp. 141–146. 905

9. Chen, Q.; Grundy, J.; Hosking, J. SUMLOW: early design-stage sketching of UML diagrams on 906

an E-whiteboard. Software: Practice and Experience 2008, 38, 961–994. 907

10. Brieler, F.; Minas, M. A model-based recognition engine for sketched diagrams. Journal of Visual 908

Languages & Computing 2010, 21, 81–97. 909

11. Paulson, B.; Hammond, T. Paleosketch: accurate primitive sketch recognition and beautification. 910

In Proceedings of the Proceedings of the 13th international conference on Intelligent user 911

interfaces, 2008, pp. 1–10. 912

12. Julca-Aguilar, F.; Mouchère, H.; Viard-Gaudin, C.; Hirata, N.S. A general framework for the 913

recognition of online handwritten graphics. International Journal on Document Analysis and 914

Recognition (IJDAR) 2020, 23, 143–160. 915

13. Wu, J.; Wang, C.; Zhang, L.; Rui, Y. Offline Sketch Parsing via Shapeness Estimation. In 916

Proceedings of the IJCAI. Citeseer, 2015, Vol. 15, pp. 1200–1206. 917

14. Costagliola, G.; De Rosa, M.; Fuccella, V. Local context-based recognition of sketched diagrams. 918

Journal of Visual Languages & Computing 2014, 25, 955–962. 919

Version January 6, 2024 submitted to Electronics 28 of 28

15. Bresler, M.; Van Phan, T.; Prusa, D.; Nakagawa, M.; Hlavác, V. Recognition system for on-line 920

sketched diagrams. In Proceedings of the 2014 14th International Conference on Frontiers in 921

Handwriting Recognition. IEEE, 2014, pp. 563–568. 922

16. Bresler, M.; Prŭša, D.; Hlaváč, V. Recognizing off-line flowcharts by reconstructing strokes and 923

using on-line recognition techniques. In Proceedings of the 2016 15th International Conference 924

on Frontiers in Handwriting Recognition (ICFHR). IEEE, 2016, pp. 48–53. 925

17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region 926

proposal networks. Advances in neural information processing systems 2015, 28. 927

18. Julca-Aguilar, F.D.; Hirata, N.S. Symbol detection in online handwritten graphics using faster 928

R-CNN. In Proceedings of the 2018 13th IAPR international workshop on document analysis 929

systems (DAS). IEEE, 2018, pp. 151–156. 930

19. Schäfer, B.; Van der Aa, H.; Leopold, H.; Stuckenschmidt, H. Sketch2Process: End-to-end BPMN 931

Sketch Recognition Based on Neural Networks. IEEE Transactions on Software Engineering 2022. 932

20. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks 933

for object detection. In Proceedings of the Proceedings of the IEEE conference on computer 934

vision and pattern recognition, 2017, pp. 2117–2125. 935

21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the Proceedings of 936

the IEEE international conference on computer vision, 2017, pp. 2961–2969. 937

22. Amjoud, A.B.; Amrouch, M. Object Detection Using Deep Learning, CNNs and Vision Trans- 938

formers: A Review. IEEE Access 2023. 939

23. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proceedings of the 940

IEEE 2023. 941

24. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object 942

detection. In Proceedings of the Proceedings of the IEEE conference on computer vision and 943

pattern recognition, 2016, pp. 779–788. 944

25. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object 945

detection with transformers. In Proceedings of the European conference on computer vision. 946

Springer, 2020, pp. 213–229. 947

26. Sanchez, J.A.; Romero, V.; Toselli, A.H.; Villegas, M.; Vidal, E. ICDAR2017 competition on 948

handwritten text recognition on the READ dataset. In Proceedings of the 2017 14th IAPR 949

international conference on document analysis and recognition (ICDAR). IEEE, 2017, Vol. 1, pp. 950

1383–1388. 951

27. Ukkonen, E. Finding approximate patterns in strings. Journal of algorithms 1985, 6, 132–137. 952

28. Hammond, T.; Davis, R. Tahuti: A geometrical sketch recognition system for uml class diagrams. 953

In ACM SIGGRAPH 2006 Courses; 2006; pp. 25–es. 954

29. Fang, J.; Feng, Z.; Cai, B. DrawnNet: offline hand-drawn diagram recognition based on keypoint 955

prediction of aggregating geometric characteristics. Entropy 2022, 24, 425. 956

30. Montellano, C.D.B.; Garcia, C.O.F.C.; Leija, R.O.C. Recognition of Handwritten Flowcharts 957

using Convolutional Neural Networks. International Journal of Computer Applications 2022, 958

184, 37–41. https://doi.org/10.5120/ijca2022921969. 959

31. Schäfer, B.; Stuckenschmidt, H. DiagramNet: hand-drawn diagram recognition using visual 960

arrow-relation detection. In Proceedings of the Document Analysis and Recognition–ICDAR 961

2021: 16th International Conference, Lausanne, Switzerland, September 5–10, 2021, Proceedings, 962

Part I 16. Springer, 2021, pp. 614–630. 963

32. Pittke, F.; Leopold, H.; Mendling, J. Automatic detection and resolution of lexical ambiguity in 964

process models. IEEE Transactions on Software Engineering 2015, 41, 526–544. 965

33. Chakraborty, S.; Sarker, S.; Sarker, S. An exploration into the process of requirements elicitation: 966

A grounded approach. Journal of the association for information systems 2010, 11, 1. 967

34. Yang, J.; Lu, J.; Lee, S.; Batra, D.; Parikh, D. Graph r-cnn for scene graph generation. In 968

Proceedings of the Proceedings of the European conference on computer vision (ECCV), 2018, 969

pp. 670–685. 970

35. Davis, B.; Morse, B.; Cohen, S.; Price, B.; Tensmeyer, C. Deep visual template-free form parsing. 971

In Proceedings of the 2019 International Conference on Document Analysis and Recognition 972

(ICDAR). IEEE, 2019, pp. 134–141. 973

https://doi.org/10.5120/ijca2022921969

	Introduction
	Related Works
	Flowmind Recognition
	Keypoint Detection
	Related Software

	Challenges
	Dataset
	Dataset Collection
	Dataset Annotation
	Dataset Characteristics
	Dataset Splitting

	Methods
	Object & Keypoint Detection
	Post processing

	Evaluation
	Evaluation Setup
	Results

	Discussion
	Conclusion
	References

